Catch crop diversity increases rhizosphere carbon input and soil microbial biomass

Abstract

Catch crops increase plant species richness in crop rotations, but are most often grown as pure stands. Here, we investigate... ## Results ### Plant biomass and net ecosystem exchange The NEE decreased significantly with increasing catch crop diversity (Fig. 1), suggesting increasing -C uptake from the atmosphere.

# written with R version 4.0.2 (2020-06-22) -- "Taking Off Again"
##------ Tue Oct 13 11:53:48 2020 ------##
# by Norman Gentsch

library(tidyverse)
library(lme4)
library(emmeans)
library(multcomp)


# set theme for ggplot
theme_set(theme_bw())
theme_myBW <- theme(axis.title.x = element_text(size = 10, color = "black"), 
                    axis.title.y = element_text(angle = 90, vjust = 1.5, size = 10, color = "black"),
                    axis.text.x = element_text(size = 7, color = "black"), 
                    axis.text.y = element_text(size = 10, color = "black"), 
                    axis.ticks =element_line(colour="black"),
                    strip.text.x = element_text(size = 10, color = "black"),
                    strip.background = element_blank(),
                    panel.border =element_rect(colour="black", fill=NA), 
                    panel.grid.major = element_blank(),
                    panel.grid.minor = element_blank(),
                    plot.title = element_text(size = 12, hjust=0.5),
                    #legend.position=c(0.0,1.0), 
                    #legend.justification=c(0,1), 
                    legend.text = element_text(size = 10),
                    legend.text.align=0,
                    legend.title =  element_text(size = 10), 
                    legend.key = element_rect(colour="white", fill = "white"),
                    legend.key.size = unit(5, "mm"),
                    legend.background = element_blank())


# set vector with colors and label
COL <- c("Fallow" = "slategray", "Mustard" = "red3" , "Mix4" = "orchid3", "Mix12"= "orange4")
SHP <- c("Fallow"=21,"Mustard"=22,"Mix4"=23, "Mix12"=24)


data <- read.csv2("data.csv", as.is=T)
data$cc_variant <- factor(data$cc_variant, levels = c("Fallow", "Mustard", "Mix4", "Mix12"))
data$NEE <- as.numeric(data$NEE)


lm_NEE <- lmer(NEE ~ cc_variant + (1|Date), data=data)
df_NEE <- cld(emmeans(lm_NEE, specs ="cc_variant"), Letters=letters, sort=FALSE)

#Compute Position
Pos <- aggregate(NEE~cc_variant,data,min)

# summary table for 
sum.lm <- glht(lm_NEE, linfct = mcp(cc_variant = "Tukey"))
#summary(sum.lm)$test$pvalue


glht.table <- function(x) {
  pq <- summary(x)$test
  mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues)
  colnames(mtests) <- c("Estimate", "Std Error", "z value", "p value")
  return(mtests)
  }

df.summary <- data.frame(glht.table(sum.lm))
#df.summary
abc <- subset (df.summary, p.value<0.01)
maxValue <- max(abc$p.value)
p <- round(maxValue + 5*10^(-3), 2)

colMax <- function(data) sapply(data, max, na.rm = TRUE)

# Plot for BFS
 ggplot(data, aes(x= cc_variant, y=NEE, fill= cc_variant))+
  geom_boxplot()+
  scale_fill_manual(values = COL, guide=FALSE)+
  geom_text(data= merge(df_NEE,Pos) ,
            aes(y=NEE-10,x=cc_variant, label=.group))+
  labs(x="Catch crop variant",  y=expression("NEE (mg CO"[2]~"- C"~m^{-2}~h^{-1}~")"), fill="")+
  theme_myBW+scale_x_discrete(limits=c("Fallow", "Mustard", "Mix4", "Mix12"))

#ggsave("Fig1.png", width = 84, height = 70, units = "mm", dpi = 600)



#summary(lm_NEE)

Net ecosystem exchange (NEE) of C between catch crop treatments. Bars represent means ± SE; lowercase letters denote significant differences (p < p) between treatments

Discussion

NEE is linked to plant diversity

... The NEE in our study showed a remarkably strong negative gradient from mustard to mix 4 to mix 12 (Fig. 1), which suggested higher photosynthetic -C fixation rates with increasing catch crop diversity.